The correct total energy, eq 3 of the text, is

$$
E_{\mathrm{T}}=\mathrm{OES}+\mathrm{CORE}-\mathrm{ER} 2-\mathrm{ER} 1
$$

We assume (a) the one-center part of the electron repulsion energy, ERI, varies slowly with the angle and may be taken as constant, (b) the $\mathrm{B}-\mathrm{B}$ distance is great enough that asymptotic form of the two-center electron interaction integral, $1 / R$, may be used in ER2. With $R=R_{\mathrm{B}-\mathrm{B}}$, the variable part of the correction to the OES is simply

$$
E=\left(Z_{\mathrm{B}}-p_{\mathrm{B}}\right)^{2} / R
$$

where Z_{B} is the core charge of atom B and p_{B} is its electronic population. It will differ from Z_{B} by some amount $t, p_{\mathrm{B}}=Z_{\mathrm{B}}+t$, and t may be positive for negative B as in CO_{2} or negative for positive B as in $\mathrm{Li}_{2} \mathrm{O}$.

There are two interesting cases. In the first, noniterative model, the calculation uses the free atom popu-
lation in the effective Hamiltonian, meaning that one of the p_{B} factors above is equal to Z_{B}. The correction varies as

$$
E=\left(Z_{\mathrm{B}}^{2}-Z_{\mathrm{B}}\left(Z_{\mathrm{B}}+t\right)\right) / R=-t Z_{\mathrm{B}} / R
$$

In the second case, iteration to self-consistency, both populations are ($Z_{\mathrm{B}}+t$), though t may be reduced typically by about $30-40 \%$. Then the correction varies as

$$
E=\left(Z_{\mathrm{B}}^{2}-\left(Z_{\mathrm{B}}+t\right)^{2}\right) / R=-\left(2 t Z_{\mathrm{B}}+t^{2}\right) / R
$$

In addition to suggesting that the neutral starting option may provide better angle estimates by OES, this analysis also suggests that the self-consistent values should be relatively worse when the ligands are negative.

It is clear that the most favorable case is that of little or no charge transfer, when the long distance corrections for angle variation disappear.

Molecular Orbital Theory of Pentacoordinate Phosphorus

Roald Hoffmann, James M. Howell, and Earl L. Muetterties
Contribution from the Department of Chemistry, Cornell University, Ithaca, New York 14850, and the Central Research Department, E. I. du Pont de Nemours \& Co., Wilmington, Delaware 19898. Received August 25, 1971

Abstract

The electronic structure of some idealized PH_{5} geometries of $D_{3 h}, C_{4 v}$, and C_{8} symmetries is analyzed. Each geometry is characterized by a low-lying nodeless orbital, three singly noded orbitals close in energy, and a high-lying doubly noded nonbonding orbital. The latter orbital is the only one significantly stabilized by the inclusion of 3 d orbitals in the \mathbf{P} basis set and also determines the relative stability of substituted compounds differing in electronegativity from H . A potential surface connecting the $D_{3 h}$ and $C_{4 v}$ geometries through $C_{2 v}$ structures is constructed. It shows a small barrier for the Berry pseudorotation process. Optimum C_{s} structures are at higher energy than the $C_{4 v}$ geometry. An examination of substituent effects rationalizes favored apical substitution in the trigonal bipyramid and preferred basal substitution in the square pyramid by more electronegative groups. It is predicted that π acceptors will prefer axial sites in the trigonal bipyramid, π donors equatorial positions. If a substituent has a single π system and is located in the equatorial position it will prefer to have its acceptor orbital perpendicular to the equatorial plane or its donor orbital in that plane. In the square pyramid, π donors will favor the apical position, π acceptors the basal sites. The concerted fragmentation reaction $\mathrm{PR}_{5} \rightleftarrows \mathrm{PR}_{3}+\mathrm{R}_{2}$ is symmetry forbidden for the least-motion axial-equatorial departure from a trigonal bipyramid, and allowed for axial-axial or equatorial-equatorial departure.

TThe literature is replete with theories of bonding of pentacoordinate phosphorus. ${ }^{1-31}$ We add here a molecular orbital description which is (1) simple,
(1) I. Langmuir, J. Amer. Chem. Soc., 41, 868 (1919).
(2) F. J. Garrick, Phil. Mag., 14, 914 (1932).
(3) G. E. Kimball, J. Chem. Phys., 8, 188 (1940).
(4) N. V. Sidgwick and H. M. Powell, Proc. Roy. Soc., Ser. A, 176, 153 (1940).
(5) R. Daudel and A. Bucher, J. Chim. Phys., 42, 6 (1945); R. Daudel, A. Bucher, and H. Moureu, C. R. Acad. Sci., 218, 917 (1944).
(6) G. H. Duffey, J. Chem. Phys., 17, 196 (1949).
(7) A.-C. Tang and H.-K. Lee, J. Chin. Chem. Soc. (Taipei) 17, 252 (1950).
(8) H. Siebert, Z. Anorg. Allgem. Chem., 265, 303 (1951).
(9) D. P. Craig, A. Maccoll, R. S. Nyholm, L. E. Orgel, and L. E. Sutton, J. Chem. Soc., 332 (1954); D. P. Craig and E. A. Magnusson, ibid., 4895 (1956).
(10) J. W. Linnett and C. F. Mellish, Trans. Faraday Soc., 50, 665 (1954); J. W. Linnett, "The Electronic Structure of Molecules," Methuen and Co., London, 1964, p 122.
(11) C. Duculot, C. R. Acad Sci., 245, 802 (1957).
(2) covers a wide range of geometries, (3) focuses on the role of substituents, and (4) gives some further insight

[^0]

Figure 1. The occupied molecular orbitals of $D_{3 \hbar} \mathrm{PH}_{5}$ as derived from an extended Hückel calculation without d orbitals. The circle sizes indicate schematically the magnitude of the coefficients.
into a possible concerted reaction interrelating trivalent and pentavalent phosphorus.

The Molecular Orbitals of Some Idealized $\mathbf{P H}_{5}$ Geometries

We begin with the simplest and as yet unsynthesized phosphorane, PH_{5}. Our model is a molecular orbital calculation which uses only the valence orbitals, 3 s and 3 p on phosphorus, is on hydrogen. The effect of 3d orbitals will be subsequently examined. Since differences in bonding with geometrical orientation are one
(d) E. L. Muetterties, Accounts Chem. Res., 3, 266 (1970); (e) E. L. Muetterties, Rec. Chem. Progr., 31, 51 (1970).
(19) R. Schmutzler, Angew. Chem., 77, 530 (1965); R. Schmutzler, Advan. Fluorine Chem., 5, 1 (1965); R, Schmutzler in "Halogen Chemistry," Vol. 2, V. Gutmann, Ed., Academic Press, New York, N. Y., 1967, p 31.
(20) R. R. Holmes, R. P. Carter, Jr., and G. E. Petersen, Inorg. Chem., 3, 1748 (1964).
(21) (a) L. S. Bartell and K. W. Hansen, ibid., 4, 1777 (1965); K. W. Hansen and L. S. Bartell, ibid., 4, 1775 (1965); (b) L. S. Bartell, ibid., 5, 1635 (1966); (c) L. S. Bartell, J. Chem. Educ., 45, 754 (1968).
(22) (a) J. I. Musher, Science, 141, 736 (1963); J. I. Musher, Angew. Chem., 81, 68 (1969); (b) J. I. Musher in "Conformational Analysis," G. Chiurdoglu, Ed., Academic Press, New York, N. Y., 1971, p 177.
(23) J. M. Letcher and J. R. Van Wazer, J. Chem. Phys., 45, 2916, 2927 (1966).
(24) D. Hellwinkel, Chem. Ber., 99, 3629, 3642 (1966).
(25) (a) P. C. Van der Voorn and R. Drago, J. Amer. Chem. Soc., 88, 3255 (1966); (b) P. C. Van der Voorn, K. F. Purcell, and R. S. Drago, J. Chem. Phys., 43, 3457 (1965).
(26) D. P. Santry and G. A. Segal, ibid., 47, 158 (1967).
(27) R. S. Berry, M. Tamres, C. J. Ballhausen, and H. Johansen, Acta Chem. Scand., 22, 231 (1968).
(28) R. D. Brown and J. B. Peel, Austr. J. Chem., 21, 2605, 2617 (1968).
(29) D. B. Boyd, J. Amer. Chem. Soc., 91, 1200 (1969).
(30) (a) I. Ugi, D. Marquarding, H. Klusacek, G. Gokel, and P. Gillespie, Angew. Chem., 82, 741 (1970); (b) F. Ramirez, S. Pfohl, E. A. Tsolis, J. F. Pilot, C. P. Smith, I. Ugi, D. Marquarding, P. Gillespie, and P. Hoffmann, Phosphorus 1, 1 (1971); (c) I. Ugi, D. Marquarding, H. Klusacek, P. Gillespie, and F. Ramirez, Accounts Chem. Res., 4, 288 (1971); (d) P. Gillespie, P. Hoffmann, H. Klusacek, D. Marquarding, S. Pfohl, F. Ramirez, E. A. Tsolis, and I. Ugi, Angew. Chem., 83, 691 (1971).
(31) J. B. Florey and L. C. Cusachs, J. Amer. Chem. Soc., 94, 3040 (1972).
of our primary concerns we do not prejudice the results by putting in different $\mathrm{P}-\mathrm{H}$ distances. ${ }^{32}$ All the calculations reported in this paper are for $\mathrm{P}-\mathrm{H}$ distances of $1.42 \AA$. Where energies or wave function coefficients are explicitly quoted they are derived from an extended Hückel calculation. ${ }^{33}$

The occupied molecular orbitals of a $D_{3 h}$ trigonalbipyramid PH_{5} are shown schematically in Figure $1 .{ }^{34}$ The essential features of the electronic structure of the molecule are the following: (1) The ground configuration is $\left(1 a_{1}\right)^{2}\left(1 a_{2}{ }^{\prime \prime}\right)^{2}\left(1 e^{\prime}\right)^{4}\left(2 a_{1}\right)^{2}$. There are no low-lying unoccupied orbitals. (2) The $2 a_{1}{ }^{\prime}$ orbital has an interesting composition, one of significance in our subsequent analysis. It is essentially distributed only over the hydrogens with very little contribution from P 3s. The axial hydrogen coefficients are larger than the equatorial. Because $2 \mathrm{a}_{1}{ }^{\prime}$ is on the outer ligand atoms it can be classified as a nonbonding orbital. In fact, it has two nodal surfaces, and is slightly antibonding. A large energy gap segregates it from the other occupied PH_{5} orbitals.

As interesting as the molecular orbitals of PH_{5} are by themselves our prime concern is in understanding qualitatively why these orbitals came out the way they did, and their relationship to bonding schemes suggested by others.

Figure 2 contains two interaction diagrams directed toward this end. At the top we see the construction of PH_{5} orbitals from the interaction of a planar PH_{3} molecule with the two axial hydrogens. The lower $\mathrm{a}_{1}{ }^{\prime}+\mathrm{e}^{\prime}$ set of PH_{3} is the $\mathrm{P}-\mathrm{H} \sigma$ bonds, the upper $\mathrm{a}_{1}{ }^{\prime}$ $+\mathrm{e}^{\prime}$ set the σ^{*} levels; $\mathrm{a}_{2}{ }^{\prime \prime}$ is the phosphine lone pair ${ }^{37}$ The axial hydrogens, assumed to interact weakly with each other, generate an $a_{1}{ }^{\prime}$ and $a_{2}{ }^{\prime \prime}$ set. The $a_{2}{ }^{\prime \prime}$ orbitals of PH_{3} and axial hydrogens interact strongly, the bonding combination of the two forming the $\mathrm{la}_{2}{ }^{\prime \prime}$ orbital illustrated in Figure 1. The middle $a_{1}{ }^{\prime}$ orbital of PH_{5} is derived primarily from the $\mathrm{a}_{1}{ }^{\prime}$ axial hydrogen combination, mixing into itself the $\mathrm{PH}_{3} \sigma$ and $\sigma^{*} \mathrm{a}_{1}{ }^{\prime}$ orbitals. This mixing is shown diagrammatically in $\mathbf{1}$ below-the lower $\mathrm{a}_{1}{ }^{\prime}$ is mixed in in an antibonding

(32) The axial-equatorial bond length differences in some $P R_{5}$ molecules are accurately known. For instance, in pentaphenylphosphorus $\mathrm{P}-\mathrm{C}$ axial is $1.99 \AA, \mathrm{P}-\mathrm{C}$ equatorial is $1.85 \AA$ (P. J. Wheatley, J. Chem. Soc., 2206 (1964)); PF_{5} has $\mathrm{P}-\mathrm{F}$ axial $1.58 \AA, \mathrm{P}-\mathrm{F}$ equatorial $1.53 \AA$ (K. W. Hansen and L. S. Bartell, Inorg. Chem., 4, 1775 (1965)). In the phosphorus series axial bond distances are consistently longer than equatorial bond distances.
(33) R. Hoffmann, J. Chem. Phys., 39, 1397 (1963); R. Hoffmann and W. N. Lipscomb, ibid., 36, 2179 (1962); 37, 2872 (1962). The Slater orbitals we used had exponents of $1.3(\mathrm{H}), 1.6(\mathrm{P}) ; H_{i i}$ were $-13.6(\mathrm{H}$ 1s), -18.6 (P 3s), -14.0 eV (P 3p).
(34) Similar orbitals for PH_{5} were obtained in an extended Hückel calculation which used somewhat different parameters: K. Issleib and W. Grundler, Theor. Chim. Acta, 8, 70 (1967). An ab initio calculation on PH_{5} has been carried out (ref 35), yielding similar orbitals except for a reversed ordering of $1 \mathrm{e}^{\prime}$ and $1 \mathrm{a}_{2}{ }^{\prime \prime}$. A previous extended Huickel calculation in our group has been briefly discussed in ref 36.
(35) A. Rauk, Princeton University, quoted by K. Mislow, Accounts Chem. Res., 3, 321 (1970); A. Rauk, L. C. Allen, and K. Mislow, J. Amer. Chem. Soc., 94, 3035 (1972).
(36) D. Boyd, R. Hoffmann, and S. Z. Goldberg, J. Amer. Chem. Soc., 92, 3929 (1970).
(37) An excellent description of the orbitals of XH_{3} species has been given by B. M. Gimarc, J. Amer. Chem. Soc., 93, 593 (1971).

Figure 2. Two interaction diagrams for the construction of the molecular orbitals of $D_{3 \hbar} \mathrm{PH}_{5}$. At the top the orbitals are constructed from the interaction of a planar PH_{3} and two axial hydrogens. At the bottom the orbitals are formed from normal PH equatorial bonds and an electron-rich three-center bond as formulated by Rundle.
way, the upper $\mathrm{a}_{1}{ }^{\prime}$ in a bonding way. ${ }^{38}$ Note that cancellation at P 3s follows. Moreover, since $2 a_{1}{ }^{\prime}$ is derived primarily from the $\mathrm{a}_{1}{ }^{\prime}$ axial hydrogen combination, we can see that it should retain electron density mainly on those hydrogens.

An alternative construction of the PH_{5} orbitals is based on the remarkably perceptive analysis of elec-tron-rich three-center bonding due to Rundle. ${ }^{15,21,39}$ Rundle viewed the equatorial PH bonding as normal, and for the axial PH bonding constructed delocalized orbitals from the $\mathrm{P} 3 \mathrm{p}_{z}$ and the axial hydrogen Is functions. These three-center orbitals are shown at right in the bottom half of Figure 2. The nonbonding $\mathrm{a}_{1}{ }^{\prime}$ orbital of this three-center set is localized on the axial hydrogens. When we allow mixing of the equatorial PH σ and σ^{*} levels with the axial three-center system this $\mathrm{a}_{1}{ }^{\prime}$ orbital, in a manner just like that shown in 1 above, shifts a minor but significant part of its electron density to the equatorial hydrogens. Rundle's semilocalized model is very close to the completely delocalized molecular orbital picture. ${ }^{40}$

We turn to the C_{40}, square pyramidal structure of PH_{5}. Within the C_{40} constraint there remains a single parameter, the $\mathrm{H}_{\text {apical }}-\mathrm{P}-\mathrm{H}_{\text {basal }}$ angle α. In

[^1]b_{1}

-11.25

10,

-22.26

Figure 3. Occupied molecular orbtials of $C_{4 v} \mathrm{PH}_{5}$ derived from an extended Hückel calculation without d orbitals. The circle sizes indicate schematically the magnitude of the coefficients.
the absence of d orbitals, with all P-H $=1.42 \AA$, extended Hückel calculations yield the lowest energy for $\alpha=99.8^{\circ}$. A calculation on $\mathrm{PF}_{5}{ }^{41}$ optimized α

also at 99.8°. It might be noted that the simplest electrostatic model, five-point charges moving on the surface of a sphere while constrained to C_{40} geometry, results in least repulsion for $\alpha=104.1^{\circ} .^{42}$

The energy levels and schematic orbital representation for this optimal α are given in Figure 3. The points to note are the following. (1) The ground configuration is $\left(1 a_{1}\right)^{2}(1 e)^{4}\left(2 a_{1}\right)^{2}\left(1 b_{1}\right)^{2}$. There now is an unoccupied molecular orbital not too high in energy. Its composition is indicated below. (2) As in the

$3 a_{1}$
$D_{3 h}$ geometry there is here a very high-lying nonbonding orbital, separated by a large gap from the bonding orbitals. This is $l b_{1}$, by symmetry equally distributed over the four basal hydrogens only.

In the square pyramid we have an essentially normal apical $\mathrm{P}-\mathrm{H}$ bond and in the base electron-rich multicenter bonding. The similarity of the $1 e+1 b_{1}$ set
(41) Where calculations involving the fluorine substituent are reported in this paper they refer to the following parameters: $2 \mathrm{~s}, 2 \mathrm{p}$ exponents, $2.425 ; H_{i i}(2 \mathrm{~s}),-40.0, H_{i i}(2 \mathrm{p}),-18.1 \mathrm{eV} ; \mathrm{P}-\mathrm{F}$ distance, $1.58 \AA$.
(42) J. Zemann, Z. Anorg. Allgem. Chem., 324, 241 (1963).

-11.12

10°

-22.26

Figure 4. The occupied molecular orbitals of PH_{5} with C_{s} geometry, as derived from an extended Hückel calculation without d orbitals. At left is the C_{s} structure resembling a distorted $D_{3 h}$ structure $\left(\delta=0^{\circ}\right)$. At right is the C_{s} structure resembling a distorted $C_{4 v}$ geometry $\left(\delta=30^{\circ}\right)$.
of $C_{4 v} \mathrm{PH}_{5}$ to the $1 \mathrm{a}_{2}{ }^{\prime \prime}+2 \mathrm{a}_{1}{ }^{\prime}$ orbital set of the $D_{3 n}$ geometry is obvious. As noted by Rundle ${ }^{15}$ and Bartell ${ }^{21}$ the $\mathrm{P}-\mathrm{H}$ bonds involved in this electron-rich multicenter bonding are weaker, and the corresponding hydrogens more negative. This emerges from the charges and overlap populations shown below.

There are seven degrees of freedom for the motion of five points on the surface of a sphere. The $D_{3 n}$ geometry is unique, while the C_{40} structure is characterized by one degree of freedom. In the next section we will consider a two-dimensional surface connecting the $D_{3 \hbar}$ and $C_{4 v}$ structures under the symmetry constraint of preserving two orthogonal planes of symmetry. However, at this point we want to consider the orbitals of a lower symmetry structure of C_{s} symmetry. The geometrical constraint for this structure may be easiest defined by specifying that the structure contains a PH_{3} group with local C_{30} symmetry and a $\mathrm{PH}_{2}{ }^{\prime}$ group with local C_{20} symmetry, and moreover that the C_{3} and C_{2} axes coincide. Such a structure, illustrated in 2 or 3 , carries with it two

2

3
degrees of freedom: an HPH angle, β; an $\mathrm{H}^{\prime} \mathrm{PH}^{\prime}$ angle, γ. We can define further an angle δ specifying the rotation of the threefold rotor relative to the twofold rotor. To anticipate an obvious result, the energy
is expected to and does vary only very slightly with δ-we have here a sixfold barrier problem, and sixfold barriers are low in energy.

Why consider this structure? There are the following reasons: (1) such geometries, or close relations, have been suggested as possible way points in the polytopal rearrangements of phosphoranes; ${ }^{43}$ (2) In the $\mathrm{CH}_{5}{ }^{+}$system molecular orbital calculations make the C_{s} structure the global energy minimum. ${ }^{44}$

In our calculations the optimum energy C_{s} structure for PH_{5} has $\beta=91.5, \gamma=87.2, \delta=0^{\circ} .{ }^{45}$ For PF_{5} these angles are $92.3,85.6$, and 0°, respectively. The energy difference between optimized 2 and $\mathbf{3}$ is only $0.07 \mathrm{kcal} / \mathrm{mol}$. The molecular orbitals of both PH_{5} C_{s} structures are shown in Figure 4.

The molecular orbitals of 2 are similar to those of the $D_{3 h}$ form. This is hardly a surprise since the angular distortion in going from $D_{3 h}$ to $C_{s}(2)$ is small. Similarly the orbitals of 3 resemble those of the C_{40} structure. Examination of structures with $0^{\circ}<\delta<30^{\circ}$ shows the steady evolution of the orbitals from one extreme to the other. The results of a population analysis on the optimal C_{s} forms are shown below.

On comparison of the molecular orbitals of $D_{3 n}$, $C_{4 v}$, and C_{s} structures we note the following general features: (1) There is in each case a low-lying nodeless molecular orbital ($1 \mathrm{a}_{1}{ }^{\prime}$ in $D_{3 h}$, la a_{1} in $C_{4 v}$, $1 a^{\prime}$ in C_{s}) consisting of an in-phase combination of P 3s with hydrogen is functions. (2) Next in energy, and not far separated from each other, is a group of three singly noded orbitals $\left(\mathrm{la}_{2}{ }^{\prime \prime}{ }^{\prime}+1 \mathrm{e}^{\prime}\right.$ in $D_{3 h}, 2 \mathrm{a}_{1}+\mathrm{e}$ in $C_{40}, 2 \mathrm{a}^{\prime}+3 \mathrm{a}^{\prime}+1 \mathrm{a}^{\prime \prime}$ in C_{s}), each composed of a single 2 p orbital and an accompanying hy-
(43) (a) Cf. the turnstile mechanism of I. Ugi, F. Ramirez, and coworkers, ref 30; (b) J. I. Musher in a 1969 lecture, published in ref $22 b$; (c) E. L. Muetterties, J. Amer. Chem. Soc., 91, 1636 (1969); (d) there is a relatively low frequency vibration of $D_{3 h} \mathrm{PX}_{5}$ molecules, $\nu_{8}\left(\mathrm{e}^{\prime \prime}\right)$, which may distort the trigonal bipyramid toward this structure. ν_{8} is at 514 cm^{-1} in PF_{5} : J. E. Griffiths, R. P. Carter, Jr., and R. R. Holmes, J. Chem. Phys., 41, 863 (1964); L. C. Hoskins and R. C. Lord, ibid., 46, 2402 (1967). The normal modes of PF_{5} are shown in ref 8 and by R. R. Holmes, R. M. Deiters, and J. A. Golen, Inorg. Chem., 8, 2612 (1969).
(44) (a) V. M. Volkov and A. A. Levin, Zh. Strukt. Khim., 4, 114 (1963); (b) G. Favini, G. Majorino, and M. Simonetta, Accad. Naz. Lincei, Ser. 8, 38, 775 (1965); A. Gamba, G. Morosi, and M. Simonetta, Chem. Phys. Lett., 3, 20 (1969); C. R. M. Rutledge and A. F. Saturno, J. Chem. Phys., 43, 597 (1965); (d) L. C. Allen in "Quantum Theory of Atoms, Molecules and the Solid State," P.-O. Löwdin, Ed., Academic Press, New York, N. Y., 1966, p 62; (e) T. Yonezawa, H. Nakatsuji, and H. Kato, J. Amer. Chem. Soc., 90, 1239 (1968); (f) J. L. Gole, Chem. Phys. Lett., 3, 577 (1969); 4, 408 (1969); (g) S. Ehrenson, ibid., 3, 585 (1969); R. E. Weston and S. Ehrenson, ibid., 9, 351 (1971); (h) G. A. Olah, G. Klopman, and R. H. Schlosberg, J. Amer. Chem. Soc., 91, 3261 (1969); (i) W. Th. A. M. van der Lugt and P. Ros, Chem. Phys. Lett., 4, 389 (1969); (j) H. Kollmar and H. O. Smith, ibid., 5, 7 (1970); (k) V. Dyczmons, V. Staemmler, and W. Kutzelnigg, ibid., 5, 361 (1970); (l) J. J. C. Mulder and J. S. Wright, ibid., 5, 445 (1970); (m) N. L. Allinger, J. C. Tai, and F. T. Wu, J. Amer. Chem. Soc., 92, 579 (1970); (n) W. A. Lathan, W. J. Hehre, and J. A. Pople, ibid., 93, 808 (1971); (o) M. F. Guest, J. N. Murrell, and J. B. Pedley, Mol. Phys., 20, 81 (1971).
(45) $\delta=0^{\circ}$ refers to structure 2. Conformation 3, $\delta=30^{\circ}\left(\equiv 90^{\circ}\right.$), independently optimized, has $\beta=91.5, \gamma=87.5^{\circ}$. The effect of including 3d orbitals is small. For example, structure 2, reoptimized with 3 d orbitals on p , is described by $\beta=93.3, \gamma=87.4^{\circ}$.
drogen combination. (3) In each case there is a high-lying nonbonding orbital, characterized by two nodal surfaces.

These features are hardly surprising when one considers a perturbed united atom model, or alternatively a system of ten electrons in a spherical box. ${ }^{46}$ The lowest energy level must be nodeless, S , with respect to the spherical pseudosymmetry. The next three, and only three, levels are singly noded, P , and the fifth level must be doubly noded, D. ${ }^{\text {.8b }}$

The trivial observation of the pseudosymmetry of the PH_{5} levels has some nontrivial consequences. First, we can write down qualitatively the molecular orbitals of any reasonable PH_{5} geometry. Second, the interconversion of any PH_{5} geometry into any other one is a reaction which conserves orbital symmetry, i.e., preserves the nodal character of the orbitals. ${ }^{47}$ Third, the pseudosymmetry observation allows us to say that no matter what the geometry of a PH_{5}, the participation of 3d orbitals on the central phosphorus will be effectively limited to stabilization of the doubly noded nonbonding orbital, the only one of pseudosymmetry D. ${ }^{48}$

The above discussion does not imply that we think the involvement of 3 d orbitals in phosphorane bonding is important. The question of the role of 3d orbitals in bonding of second-row elements is an old one. Far too often have 3d orbitals been invoked as a kind of theoretical deus ex machina to account for facts apparently otherwise inexplicable. Our attitude toward 3d orbitals is pragmatic. We begin by working without them. We then analyze the way they would perturb the valence orbital picture if they were active. This allows us to span the spectrum of d orbital participation that must be present in real chemistry.

In this case, and elsewhere in the paper, whenever we wanted to probe the role of 3 d orbitals, we repeated our calculations including a set of 3d orbitals with exponent 1.4 , coulomb integral, -6.0 eV . The source of these parameters is traced in ref 29 and 35 . We think they are reasonable, but an independent evaluation might be that they constitute only a guess, perhaps a reasonable one, for the case of moderate 3 d interaction. With these parameters we confirm our supposition that only the nonbonding orbital is significantly stabilized, irrespective of geometry. In each case it is lowered by approximately 1.7 eV . This stabilization is of course accompanied by transfer of electron density, in our case approximately 0.6 of an electron, from the hydrogens to the phosphorus.
PH_{5} is, of course, an unknown molecule. The most hydrogen-rich halophosphorane known is $\mathrm{PH}_{2} \mathrm{~F}_{3} .{ }^{49}$

[^2]The instability of PH_{5} we think is likely to be a kinetic rather than a thermodynamic phenomenon. Though PH_{5} is probably thermodynamically unstable relative to $\mathrm{PH}_{3}+\mathrm{H}_{2}$, ${ }^{50}$ a reaction we will discuss below, we think its instability is to be primarily attributed to the high-lying and exposed nonbonding molecular orbital. The electron density of this orbital is on the exterior of the molecule, readily available to any Lewis acid.

The Energetics of Polytopal Rearrangement in Phosphoranes

Having obtained an understanding of the electronic structure of various possible geometries of PH_{5} we turn to the important problem of the pathways of interconversion of the various conformations. We must precede our considerations with several warnings to the reader concerning the reliability of our arguments. It will first be recalled that our geometries are not fully optimized, i.e., all bond lengths are being kept constant. Second, the computational procedure used here, the extended Hückel method, occasionally gives misleading geometrical predictions. Third, we know that the potential surface is "soft," i.e., reasonably large geometrical excursions cost little energy. This raises the possibility that, to use the language of modern collision theory, dynamic effects might be important. This means that for any specific rearrangement the height of the energy barrier need not be the only determinant and that the number, disposition, and local topography of the various reaction channels must be considered.

With these caveats in mind we show in Table I the

Table I. Calculated Conformation Energies ($\mathrm{kcal} / \mathrm{mol}$)

		$D_{3 h}$	$C_{4 v}{ }^{a}$	$C_{s}{ }^{a}$
PH_{5}	No 3d	$[01$	2.3	9.1
	With 3d	00	2.1	7.4
PF_{5}	No 3d	$[01$	0.7	9.9
	With 3d	$[01$	1.4	10.0

${ }^{a}$ The energies given are for geometries individually optimized for PH_{5} and PF_{5}.
energies of optimum $C_{4 v}$ and C_{s} structures, with and without d orbital participation, relative to the energy of the most stable point found by us on this surface, the trigonal bipyramid.

We further find that neither the square pyramid nor the C_{s} structure is an energy minimum. From each there is a path of uniformly decreasing energy to the $D_{3 h}$ structure. A two-dimensional slice of the sevendimensional potential surface, including one such pathway, is shown in Figure 5. The two degrees of freedom allowed in this figure are the angles shown below.

The constraint is of $C_{2 v}$ symmetry. The dashed line traces the interconversion of two trigonal bipyramids

89, 2017 (1967); (d) a pentaalkylphoshorane has been reported: E. W. Turnbloom and T. J. Katz, ibid., 93, 4065 (1971).
(50) See ref 34 and W. E. Dasent, "Nonexistent Compounds," Marcel Dekker, New York, N. Y., 1965, p 153.

Figure 5. Potential surface for the Berry pseudorotation of PH_{5}. The energies were calculated by extended Hückel calculations without d orbitals. The angles are defined in the text. The pathway of minimum energy is indicated. The diagram has a mirror plane. Contours are in $\mathrm{kcal} / \mathrm{mol}$ relative to the $D_{3 h}$ minima.
($\phi=120, \theta=90$ and $\phi=90, \theta=120^{\circ}$) through the optimal square pyramid $\left(\phi, \theta=99^{\circ}\right)$. This $C_{40^{-}}$ $C_{20}-D_{3 h}$ pathway is the classic Berry pseudorotation. ${ }^{51}$ In agreement with all experimental estimates ${ }^{18,52,53}$ the barrier to this motion is small. It must be noted that the magnitude of this barrier as well as the general features of the two-dimensional surface of Figure 5 are adequately modeled by every calculation done on this system, from a classical electrostatic approach ${ }^{42}$ to $a b$ initio SCF computations. ${ }^{3 \overline{5}}$
While we do not trust the absolute activation barriers calculated by us, we consider their relative magnitudes reliable. ${ }^{54}$ It would appear therefore that in a symmetrically substituted phosphorane of the PR_{5} type, interconversion of axial and equatorial positions through a C_{s} transition state is unlikely. This conclusion does not necessarily apply to less symmetrically substituted molecules, nor to cases where the $C_{4 v}$ structure is destabilized.

It should be emphasized that the turnstile mechanism, ${ }^{30}$ as well as other possibilities discussed in ref 22 b and 43 c , are permutationally indistinguishable ${ }^{55 \hbar}$ from the Berry mechanism; hence the importance of pursuing the question of the potential energy surface distinctions between these alternative physical realizations of a permutational process.

[^3]

Figure 6. Correlation diagram for the $D_{3 h} \rightarrow C_{2 v} \rightarrow C_{4 v}$ (trigonal bipyramid \rightarrow square pyramid) transformation of PH_{5}. Only the occupied molecular orbitals are shown.

The evidence to date seems to us to favor the operation of the Berry mechanism for PF_{5} and its derivatives. The work of Whitesides and Mitchell ${ }^{56}$ has definitively shown that in $\mathrm{R}_{2} \mathrm{NPF}_{4}$ the character of the line changes in the nmr spectra is consistent only with the Berry mechanism or a permutationally equivalent mechanism. It should be emphasized that for this particular case the permutational group contains only two permutationally distinguishable mechanisms; thus only a few of the possible mechanisms have literally been excluded by this study. It must be kept in mind in considering mechanisms for rearrangements in five-coordinate species that if the actual bond angles in the molecule depart significantly from the idealized trigonal bipyramidal angles, it is unrealistic to consider any of the idealized mechanisms based on the trigonal bipyramid. An example of this type of situation has been found in five-coordinate transition metal hydrides of the type HML_{4} where the ML_{4} substructure is a regular tetrahedron or a nearly regular tetrahedron. ${ }^{55 \mathrm{~b}}$ The concept of facile intramolecular exchange has been questioned by Musher ${ }^{22}$ and by Brownstein. ${ }^{57}$ However, the studies on the rearrangement in $\mathrm{PF}_{3} \mathrm{Cl}_{2}$ and $\mathrm{PF}_{3} \mathrm{Br}_{2}$ would appear to unequivocally rule out bimolecular processes. ${ }^{58}$

In a molecular orbital picture one can trace the reasons for preference of $D_{3 h}$ to $C_{4 v}$ geometries one step further back. A correlation diagram for the $D_{3 h^{-}}$ $C_{2 v}-C_{4 v}$ transformation is shown in Figure $6 .{ }^{59}$ The computed level trends show that the greatest energy changes and, within the extended Hückel method, the origin of the preference for the $D_{3 h}$ geometry, are those of the $1 e^{\prime}$ components- a_{1} and b_{2} in $C_{2 v}$. These results must be considered with some skepticism since they are not fully consistent with the details of the $a b$ initio calculation of $\mathrm{PH}_{5} .{ }^{35}$ But they do form the basis for a strategy to shift the stable point of the system from the trigonal bipyramid to the square pyramid-one must try to depress in energy the a_{1} component of e^{\prime}, which favors the $D_{3 h}$ geometry.

[^4]In conclusion we note that an alternative secondorder Jahn-Teller treatment of the preferred geometry of XY_{5} systems has been presented by Pearson, ${ }^{60}$ and that the molecular orbital model which predicts a close balance of $D_{3 h}$ and $C_{4 v}$ geometries for PH_{5} at the same time clearly indicates a preference for the square pyramidal geometry of the equally hypothetical ClH_{5}. Only the $C_{4 v}$ geometry of PH_{5} has a low-lying unoccupied orbital. While the halogen pentahydrides are unknown, the corresponding interhalogen $\mathrm{XY}_{\tilde{5}}$ structures and XeOF_{4} have the expected $C_{4 v}$ structures.

Substituent Effects in the Phosphorane System

We turn to a discussion of the differential effects of substituents which (1) are either more or less electronegative than hydrogen and/or (2) bear π-electron or lone-pair systems with electron donating or accepting capability. Our first steps must be in the nature of rationalizations rather than predictions-following the initial suggestion of Muetterties and coworkers ${ }^{18}$ it is now well established that more electronegative substituents favor the axial positions of a trigonal bipyramid. The selective advantages of π-electron donors and acceptors are less well known, and provide some opportunity for a predictive analysis.

From several points of view it can be deduced that in the $D_{3 h}$ geometry more electronegative substituents will preferentially enter the axial positions. ${ }^{13,15,18,21}$ The molecular orbital picture has as its keystone argument the relative accumulation of electron density at the axial hydrogens-the termini of the electronrich three-center bond. ${ }^{15.18}$ Electronegative substituents will then prefer to occupy those positions where there is most electron density-the axial positions of a trigonal bipyramid, the basal positions of a square pyramid.

To probe this effect we took one hydrogen in $D_{3 h}$ and $C_{4 v} \mathrm{PH}_{5}$ and made its coulomb integral more negative relative to its normal value of -13.6 eV . Figure 7 shows the resulting motion of the individual energy levels as well as the total energy. The behavior of the energy levels is entirely in accord with expecta-tions-those levels which possess electron density at the altered hydrogen move to lower energy, and they do so in proportion to the magnitude of that electron density. For instance, the nonbonding MO of PH_{5}, $2 \mathrm{a}_{1}{ }^{\prime}$, which has a larger coefficient in its wave function at the axial hydrogens, is stabilized more by a more electronegative substituent in the axial position than it is for an equatorial substituent. It is interesting that the major part of the differential stabilization is due to the nonbonding orbital. This generalization is not upset by the introduction of 3d orbitals on phosphorus. While the energy of the nonbonding MO is altered and electron density moves to P more from the axial than the equatorial position the axial hydrogens remain more negative.

Given that the presence of the high-lying nonbonding orbital makes PH_{5} susceptible to acid attack, such chemical reactivity should decrease as the energy of this orbital is lowered. While in PH_{5} it is calculated to lie at -11.17 eV , in $\mathrm{PH}_{4} \mathrm{~F}$ it is at -12.83 , $\mathrm{PH}_{3} \mathrm{~F}_{2},-15.56, \mathrm{PH}_{2} \mathrm{~F}_{3},-15.76, \mathrm{PHF}_{4},-15.80, \mathrm{PF}_{5}$, $-17.53 .{ }^{61}$
(60) R. G. Pearson, J. Amer. Chem. Soc., 91,4947 (1969).

Figure 7. Effect of making a single hydrogen (\mathbf{H}^{*}) in PH_{5} more electronegative than the others. At the right is the $C_{4 v}$ geometry while on the left is the $D_{3 h}$. The horizontal axis is the value of the coulomb integral of H^{*}.

The electronegativity argument was checked by a series of calculations on all substituted $D_{3 h}$ and $C_{4 v}$ fluorophosphoranes. The results are indicated pictorially in Figure 8, with $\mathrm{A}<\mathrm{B}$ meaning that isomer A is at lower energy than isomer B. These stability orders remain the same whether phosphorus 3 d orbitals are included or omitted. The actual energies are sensitive to the presence of 3 d orbitals (e.g., $E\left(\mathrm{PF}_{3}{ }^{-}\right.$ $\left.\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{a}}\right)-E\left(\mathrm{PF}_{3} \mathrm{H}_{\mathrm{e}} \mathrm{H}_{\mathrm{e}}\right)$ is 2.4 eV without 3d orbitals, 1.3 eV with). Geometries were not optimized for intermediate structures, and the extended Hückel method is known to poorly represent highly ionic bonding. For these reasons we do not report the computed energies, only the rough trend confirming the electronegativity argument. Similar results in the $\mathrm{PF}_{x} \mathrm{Cl}_{5-x}$ series have been reported by Van der Voorn and Drago. ${ }^{25 a, 62}$ The CNDO/2 calculations of Gillespie and Ugi^{30} also confirm the stability sequences, but point to a more substantial role of 3 d orbitals in determining this order than is indicated by our calculations. All methods, including ours, agree on the significant effect of 3 d orbitals in increasing $\mathrm{P}-\mathrm{X}$ bond orders.

There is no rule that a specific molecule must conform to either strict $D_{3 h}$ or $C_{4 v}$ symmetry. It is perhaps worthwhile to point out in which cases distortions

[^5]

Figure 8. Relative stabilities of the various fluorophosphoranes as derived from extended Hückel calculations. At the top there are the trigonal-bipyramid structures and at the bottom the square pyramid. $\mathrm{A}<\mathrm{B}$ implies A has lower energy than B .
from the favored $D_{3 h}$ skeleton are to be watched for. In the $D_{3 h}$ structure of $\mathrm{PX}_{3} \mathrm{Y}_{2}$, where X is more electronegative than Y , one X group must enter an equatorial position. In a C_{s} structure, on the other hand, there are three sites of high electron density. It is conceivable that the equilibrium geometry could distort from $D_{3 h}$ toward C_{s}, or that C_{s} geometries could now serve as transition states for site interchange mechanisms. Similarly in $\mathrm{PX}_{4} \mathrm{Y}$ geometries a $C_{2 v}$ distortion away from $D_{3 k}$ and toward $C_{4 v}$ could be favored.

The available structural evidence shows little sign of such distortion in ground-state geometries. Structures are available for $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{PF}_{3},{ }^{21 a} \mathrm{CH}_{3} \mathrm{PF}_{4},{ }^{21 a} \mathrm{HPF}_{4},{ }^{63} \mathrm{CF}_{3}-$ $\mathrm{PF}_{4},{ }^{64}$ and $\mathrm{CF}_{2}=\mathrm{CFPF}_{4}{ }^{65}$ In these cases C_{s} geometries for $\mathrm{PX}_{3} \mathrm{Y}_{2}$ and C_{40} for $\mathrm{PX}_{4} \mathrm{Y}$ do not prevail, angular departures from perfect trigonal-bipyramid symmetry are sometimes in the opposite direction, and, most importantly, there is a significant difference in bond distances for the axial and equatorial fluorine sets.

Still another striking example of the resistance of a $\mathrm{PX}_{3} \mathrm{Y}_{2}$ molecule to undergo a distortion toward a C_{s} ground-state geometry is shown by the structures of the dimeric N-methyltrichlorophosphinimine ${ }^{66}$ and its phenyldifluoro ${ }^{67 a}$ and trifluoro ${ }^{67 \mathrm{~b}}$ analogs. In these

[^6]structures, one of which is shown schematically below, ${ }^{66 a}$

the local trigonal-bipyramid geometry at phosphorus is maintained, despite an $\mathrm{N}-\mathrm{P}-\mathrm{N}$ angle of approximately $80^{\circ} .{ }^{68}$

On the other hand phosphonium ylides $\mathrm{R}_{3} \mathrm{P}=\mathrm{CR}_{2}$ apparently show no trace of a trigonal-bipyramid tragment geometry at phosphorus. ${ }^{36}$ One way of thinking about this is that the constraint of a twomembered ring has enforced the C_{s} structure. The transition to C_{s} occurs then somewhere between the two- and four-membered ring, and the equilibrium structure of an as yet unsynthesized pentacoordinate phosphorus in a three-membered ring becomes highly interesting.

We turn to an examination of the geometrical preferences of π-electron donors and acceptors, independent of their electronegativity. The argument is twofolda theoretical consideration of symmetry restrictions on interaction, buttressed by a computational study of model donors and acceptors.

The following concepts underlie our discussion. A π donor is defined as a substituent with one or two high-lying occupied molecular orbitals, as shown schematically in 4. A π acceptor is defined as a substituent with one or two low-lying unoccupied molecular orbitals, e.g., 5. As shown in the interaction diagram

below we have to consider three basic interactions for a donor. Interaction I, inherently destabilizing, ${ }^{38,69,70}$

is between the donor and occupied PH_{5} skeleton orbitals. Interaction II, inherently stabilizing, is between the potentially active phosphorus 3d orbitals and the donor. Interaction III, also stabilizing, is between unfilled skeletal orbitals and the donor. In
(b) A. Almenningen, B. Anderson, and E. E. Astrup, Acta Chem, Scand., 23, 2179 (1969).
(68) A recently determined structure of a four-membered cyclic oxyphosphorane does show some distortion toward local threefold symmetry: Mazhar-Ul-Haque, C. N. Caughlan, F. Ramirez, J. F. Pilots, and C. P. Smith, J. Amer. Chem. Soc., 93, 5229 (1971).
(69) L. Salem, ibid., 90,543 (1968).
(70) M. J. S. Dewar, "The Molecular Orbital Theory of Organic Chemistry," McGraw-Hill, New York, N. Y., 1969, and references therein.
$D_{3 h} \mathrm{PH}_{5}$ there are no low-lying σ^{*} orbitals and we have found little trace of interaction III. In $C_{4 v} \mathrm{PH}_{5}$ there is a somewhat low-lying unfilled MO, but even here we have not found normal donors utilizing it. We can thus restrict our discussion to interactions I and II.

For an acceptor the situation is simple (see below). There is now only one chemically significant interaction, IV, between the acceptor orbital and the occupied skeletal set.

Let us begin with the group theory for the $D_{3 h}$ case. Consider axial substitution, as in 6, and equatorial substitution, as in 7. With the molecular symmetry lowered

6

7
from $D_{3 h}$ to $C_{3 v}$ on axial substitution, or to $C_{2 v}$ on equatorial substitution, the occupied MO's of PH_{5} transform as indicated below. The substituent orbitals
transform as e in $C_{3 v}$, and as $\mathrm{b}_{1}+\mathrm{b}_{2}$ in $C_{2 v}$. The immediate simplification is that for interactions I and IV only the underlined orbitals participate.

Consider interactions I and IV first. We are not as interested in the extent to which a given donor or acceptor interacts with the PH_{5} skeleton as we are in whether it interacts more or less in an equatorial position compared to an axial one. For an acceptor the site with maximum interaction will be favored (IV is stabilizing). For a donor the site with maximum interaction will be destabilized (I is a repulsive term). The axial and equatorial interactions which are allowed by symmetry are shown below.

Interactions e_{x} and e_{ψ}, though different in appearance, are identical by symmetry. Interaction b_{2} is weaker than its axial counterpart e_{y} since in e_{y} the acceptor has an increased overlap with the p-type hydrogen combination (see arrows above). Similarly we can
decide that the b_{1} interaction is greater than b_{2}. It is difficult to draw any qualitative conclusion on the relative strengths of the b_{1} and e interactions. We fall back on calculations with model donors and acceptors such as $\mathrm{CH}_{2}{ }^{+}, \mathrm{CH}_{2}-, \mathrm{NH}_{2}$, and a hydrogen bearing empty or filled p orbitals of variable energy. In every case the interaction b_{1} was predicted to be of comparable strength to e_{x} and e_{y}, i.e., stronger than b_{2}. Our first conclusion then is that interactions between donor or acceptor orbitals and framework σ orbitals are stronger for axial than for equatorial substitution. This immediately implies that, if 3d orbitals are not of importance, π acceptors will prefer axial sites, π donors equatorial positions.

An interesting further prediction can be made for a substituent bearing a single π system (e.g., OR, COOR, NO_{2} in contrast to Cl, CN). In an axial site there will be little preferential orientation for such a substituentit encounters a sixfold barrier. In an equatorial site we have found that the b_{1} interaction is stronger than b_{2}. This implies that an equatorial single π-system acceptor will prefer to have its acceptor orbital perpendicular to the equatorial plane, as in 8, while an equatorial donor will prefer to have its donor orbital in the equatorial plane, as in 9.

8

9

The differential donor-framework π-bonding effects noted here are not small. For a model equatorial amino group in $\mathrm{PF}_{4} \mathrm{NH}_{2}$ arbitrarily kept planar, conformation 9 is calculated to be 0.28 eV more stable than 8, d orbitals not included. With 3d orbitals this difference rises to 0.78 eV . These numbers are not reliable, but they are indicative. The $\mathrm{P}-\mathrm{N}$ overlap population trends also show this effect. In conformation 9, the more stable one, the $\mathrm{P}-\mathrm{N}$ overlap population is 1.02 , while in 8 it is 0.91 , both with 3 d orbitals included.

We now turn to an analysis of interaction II, the role of 3 d orbitals. It must be reemphasized that all we can produce here is an argument for a trend. We have no way of estimating the true degree of d orbital participation, which no doubt will vary with the substituent pattern. We can only include the d orbitals in the calculation with parameters which put them low in energy and with high overlap with substituent or-bitals-this we call a model for extensive participation. Then we can repeat the calculation with the 3d orbitals at high energy and low overlap, and identify the result with the minimal end of the participation spectrum. We have done this and reach the following conclusions which we consider less reliable than our other results concerning substituent effects. (1) There is certainly a $p-\mathrm{d} \pi$ bonding component, with significant effects on computed bond orders over a wide range of d orbital participation. (2) The differential effect, i.e., the increment in stability between axial and equatorial d-orbital bonding, appears to be, except for the case of maximal d-orbital participation, a smaller effect than the interaction of donor and framework orbitals. To put it another way, when we assign to the 3 d orbitals a reasonable exponent and energy we find that
any axial-equatorial energy differences are dominated by interaction I rather than II. (3) It has traditionally been assumed that axial π bonding is more efficient than equatorial π bonding. Our calculations reach the opposite conclusion. ${ }^{71}$ The detailed rationalization may be found in the Appendix. Interaction II thus also favors equatorial donor substitution.

A similar analysis of donor and acceptor interactions in the square pyramid reaches the following conclusions: (1) In a C_{40} geometry π donors will prefer the apical position, while π acceptors will favor the basal sites. (2) If the basal substituent carries a single π system, it will preferentially align that system in the basal plane for an acceptor, but parallel with the apical bond for a donor.

The conclusions derived by us apply strictly speaking to a single donor or acceptor. The arguments for multiple substitution can be similarly constructed, though they inevitably become more complicated. Our experience with substituent effects in another area, however, indicates that one can expect the effects to be approximately additive. ${ }^{72}$

The balance of electronegativity and π-donating or accepting capability must be judged individually in each case. Consider, for example, fluorine as a substituent. It is most electronegative and so favors the axial site. On the other hand it is also a π donor, which we predict would enter an equatorial position. Both in our calculations and in reality the electronegativity effect dominates.

We turn to the experimental evidence on preferred geometries for equatorial or basal donors or acceptors. The only information available, that for donors in an equatorial position on a trigonal bipyramid, is in excellent agreement with our predictions.

Thus, the low-temperature nmr spectra of S -substituted thiotetrafluorophosphoranes of type $\mathbf{1 0}$ show

nonequivalence of the axial fluorines. ${ }^{73}$ The donor role here is played by the highest occupied MO of the -SR group, the p-type lone pair on sulfur. Conformational preference for the sterically encumbered conformation $\mathbf{1 0}$ is shown. Similar observations are available for aminophosphoranes, ${ }^{74-76}$ with activation barriers of $5-12 \mathrm{kcal} / \mathrm{mol}$ for rotation reported. ${ }^{74}$

In a recent nmr study of $\mathrm{PF}_{3}\left(\mathrm{NH}_{2}\right)_{2}$ we have shown that the equilibrium structure contains both amino lone pairs in the equatorial plane and that there exists a barrier of $11 \mathrm{kcal} / \mathrm{mol}$ to uncorrelated rotation about the $\mathrm{P}-\mathrm{N}$ bond. ${ }^{77}$

[^7]In 2,2,2-triisopropoxy-4,5-($2^{\prime}, 2^{\prime \prime}$-biphenyleno)-1,3,2dioxaphospholene (11) there are two equatorial iso-

11
propoxy groups. ${ }^{788}$ The crystal structure ${ }^{786}$ of two modifications of this molecule reveals that both isopropoxy groups assume approximately the conformation anticipated by us, namely with the oxygen p-type lone pair in the equatorial plane. However, the structure is a crowded one and the conformation found may have been forced for steric reasons. ${ }^{79}$ It is interesting that the two equatorial isopropoxy P-O distances are on the average $0.06 \AA$ shorter than the third equatorial distance, that involved in the phenanthrenequinone moiety.

In concluding this discussion of substituent effects we would like to make explicit a connection with organic chemistry which the careful reader no doubt has noted: every argument presented here for $P X_{\mathrm{j}}$ may be carried over to $C X_{5^{-}}$, to be used for stabilizing or destabilizing the transition state for the S N 2 reaction. ${ }^{80}$

The Fragmentation of $\mathbf{P R}_{5}$

Reaction I below, most commonly known with $\mathrm{R}=$

$$
\begin{equation*}
\mathrm{PR}_{5} \longleftrightarrow \mathrm{PR}_{3}+\mathrm{R}_{2} \tag{1}
\end{equation*}
$$

Cl , has a venerable history dating from the middle of the 19th century to every contemporary freshman textbook of general chemistry. ${ }^{81-88}$ What is the mechanism of this reaction? If it is truly unimolecular, and this ought to be reinvestigated with modern kinetic methods, where does the R_{2} fragment come from? Given a trigonal-bipyramid geometry of PR_{5}, do the components of R come at random from axial and equatorial positions, or is one of the specific mechanisms 12, 13, or 14 operative? An analysis from the point of

12

13

14
(78) (a) F. Ramirez, S. B. Bhatia, R. B. Mitra, Z. Hamlet, and N. B. Desai, ibid., 86, 4394 (1964); F. Ramirez and N. B. Desai, ibid., 82, 2652 (1960); 85, 3252 (1963); F. Ramirez, Bull. Soc. Chem. Fr, 113 (1970); (b) W. C. Hamilton, S. J. LaPlaca, and F. Ramirez, J. Amer. Chem. Soc., 87, 127 (1965); W. C. Hamilton, S. J. LaPlaca, F. Ramirez, and C. P. Smith, ibid., 89, 2268 (1967); R. D. Spratley, W. C. Hamilton, and J, Ladell, ibid., 89, 2272 (1967).
(79) In diphenyltriethoxyphosphorane, in which two alkoxy groups are axial and one equatorial, there appears to be no evidence for freezing in of the equatorial ethoxy group conformation: D. B. Denney, D. Z. Denney, B. C. Chang and K. L. Marsi, ibid., 91, 5243 (1969).
(80) See also P. Gillespie and I. Ugi, Angew. Chem., 83, 493 (1971).
(81) E. Mitscherlich, Ann. Phys. Chem., 29, 221 (1833).
(82) A. Cahours, Ann. Chim. Phys., Ser. 3, 20, 369 (1847).
(83) A. Wurtz, C. R. Acad. Sci., 76, 601, 610 (1873).
(84) W. Gibbs, Amer. J. Sci. Arts, [3] 18, 381 (1919).
(85) W. Nernst, Z. Elektrochem., 22, 37 (1916); C. Holland, ibid., 18, 234 (1912).
(86) A. Smith and R. P. Calvert, J. Amer. Chem. Soc., 36, 1363 (1914); A. Smith and R. H. Lombard, ibid., 37, 2055 (1915); A. Smith, Z. Elektrochem., 27, 33 (1916).
(87) W. Fischer and O. Juberman, Z. Anorg. Allgem. Chem., 235, 337 (1938).
(88) D. P. Stevenson and D. M. Yost, J. Chem. Phys., 9, 403 (1941).

Figure 9. Occupied molecular orbitals of PH_{3} with various geometries.
view of conservation of orbital symmetry ${ }^{47}$ yields a simple and surprising answer.

Let us first analyze the least-motion process $\mathbf{1 2}$ for $\mathrm{R}=\mathrm{H}$. Here an axial and equatorial hydrogen atom depart. There is a temptation to draw a correlation diagram for this motion utilizing the C_{s} plane preserved. However, all the orbitals directly involved in this process lie in that mirror plane, and thus such a correlation diagram cannot yield the required information. ${ }^{89}$ We must look at the evolution of the orbitals in the course of the reaction.

Consider the orbitals of the $D_{3 h}$ structure beginning the motion 12. The initial distortion is to a C_{s} structure whose orbitals are given at the left side of Figure 4. The $1 \mathrm{a}^{\prime}, 2 \mathrm{a}^{\prime}$, and $1 \mathrm{a}^{\prime \prime}$ orbitals of that C_{s} form have the proper shape for becoming the $\mathrm{PH} \sigma$ bonds of the PH_{3} pyramid. The PH_{3} orbitals in question are la_{1} and le of the left-hand side of Figure $9 .{ }^{37}$ The $3 a^{\prime}$ orbital becomes the PH_{3} lone pair. Thus the $\mathrm{H}_{2} \sigma_{g}$ orbital must be derived from $4 a^{\prime}$, but $4 a^{\prime}$ has a node between the departing hydrogens. No continuous evolution of orbitals is possible in this mode such that the PH_{5} orbitals yield a ground-state configuration of PH_{3} and simultaneously one of H_{2}. The reaction is forbidden.

We turn to the equatorial-equatorial departure 13. Here a correlation diagram may be utilized, since it bisects the newly formed $\mathrm{H}-\mathrm{H} \sigma$ bond. The diagram is shown in Figure 10. The orbitals at left are those of $D_{3 \hbar} \mathrm{PH}_{i}$, reclassified in symmetry according to the two mirror planes maintained. At right are the orbitals of the product-a T-shaped PH_{3} and H_{2}. The PH_{3} orbitals were described in Figure $9 .{ }^{37}$ The transformation of T-shaped PH_{3} into the equilibrium $C_{3 v}$ structure does not change nodal patterns, i.e., it is an allowed reaction. No doubt the PH_{3} fragment in this allowed fragmentation would begin distorting toward a pyramid even in the early stages of the reaction. Our conclusion that this is an allowed process would be unchanged.

We finally analyze the axial-axial elimination 14. A correlation diagram is shown in Figure $11 .{ }^{59}$ The reaction is symmetry allowed. The process at first sight appears sterically unlikely, but in a sense it is a continuation of the Berry pseudorotation.

We have concluded that of the three possible departure modes, two, 13 and 14, are allowed and one, the least-motion 12, is forbidden. A similar analysis for the square pyramid indicates that the least-motion $\mathbf{1 5}$ is forbidden, 16 and 17 allowed.
(89) See the section entitled "Precautions in the Construction of Correlation Diagrams" in ref 47.

Figure 10. Correlation diagram for the departure of two equatorial hydrogens from PH_{5} (left) to yield $\mathrm{PH}_{3}+\mathrm{H}_{2}$ (right). Only occupied orbitals are shown. Symmetry classification is with respect to the indicated planes. Refer to Figure 9 for orbitals of T-shaped PH_{3}.

Figure 11. Correlation diagram for the departure of two axial hydrogens from PH_{5} (left) to yield $\mathrm{PH}_{3}+\mathrm{H}_{2}$ (right). Only occupied molecular orbitals are shown. Symmetry classification is with respect to the indicated planes. Refer to Figure 9 for orbitals of planar PH_{3}.

15

16

17

Our results for PH_{5} fragmentation can be carried over directly to other PX_{5} systems. Still there is no experimental evidence to test our predictions. Tracer experiments with ${ }^{36} \mathrm{Cl}$ indicated that only three chlorines are scrambled in $\mathrm{PCl}_{50}{ }^{90}$ However, this cannot be taken as evidence for a dissociation-recombination mechanism with equatorial-equatorial elimination, since the remaining PCl_{3} atoms would be scrambled. Clearly further experimental work on a carefully designed system with inhibited pseudorotation is required to test our proposal.

Acknowledgment. Our collaboration began in the course of a George F. Baker Lectureship at Cornell University by E. L. M. We are grateful to the Baker

[^8]Fund for creating this circumstance. The research of R. H. and J. M. H. was generously supported by the National Science Foundation, the National Institutes of Health (GM 13468), and the Petroleum Research Fund of the American Chemical Society. The initial interest of R. H. in phosphorane chemistry was stimulated by D. A. Usher and F. H. Westheimer. We are grateful to M. Marsh, D. B. Boyd, and A. R. Rossi for discussions of this problem.

Appendix

Equatorial vs. Axial d-p π Bonding. The usual argument concerning this point ${ }^{3,20}$ goes as follows: Consider a pair of donor orbitals in an axial position, $\mathrm{e}_{x}, \mathrm{e}_{y}(6)$, and in an equatorial position, $\mathrm{b}_{1}, \mathrm{~b}_{2}(7)$. The P 3d orbitals which can by symmetry interact with these donor orbitals are: $\mathrm{e}_{x}+\mathrm{d}_{x z}, \mathrm{e}_{y}+\mathrm{d}_{y z}, \mathrm{~b}_{1}+\mathrm{d}_{x z}$, $\mathrm{b}_{2}+\mathrm{d}_{x y}$. The difference between axial and equatorial substitutions comes down to a weighing of the interaction $\mathrm{e}_{y}+\mathrm{d}_{y z}$ (axial) vs. $\mathrm{b}_{2}+\mathrm{d}_{x y}$ (equatorial). It is assumed that the $\mathrm{d}_{x y}$ orbital is partially tied up in im-
proving equatorial σ bonding. Thus the $\mathrm{e}_{y}+\mathrm{d}_{y z}$ axial interaction is said to be more stabilizing.

$$
e_{y}+d_{y z}
$$

$b_{2}+d_{x y}$
In contrast to this we find that over a wide range of d-orbital positions there is very little interaction with the $\mathrm{PH}_{5} \sigma$ orbitals. Instead we see significant mixing with $\mathrm{PH}_{5} \sigma^{*}$ orbitals, depressing the $\mathrm{e}^{\prime}\left(\mathrm{d}_{x y}, \mathrm{~d}_{x^{2}-y^{2}}\right)$ d orbital combination and making it more available as an acceptor orbital. The combined $\mathrm{d}_{x y}+\mathrm{PH}_{\sigma} *$ orbital has the shape shown in 18 . The bonding character in its combination with the donor p orbital is enhanced, 19.

Pentacovalent Phosphorus. IV. Cyclic Pentacovalent Phosphoranes from Reaction of Trivalent Phosphorus Compounds with Dimethylketene

Wesley G. Bentrude, ${ }^{*}$ W. Delmar Johnson, ${ }^{1}$ and Wajid A. Khan
Contribution from the Department of Chemistry, University of Utah, Salt Lake City, Utah 84112. Received August 9, 1971

Abstract

The reaction at -70° of dimethylketene with a wide variety of PXYZ gives a series of new $2: 1$ adducts containing pentacovalent phosphorus in a five-membered ring (5). Spectroscopic and chemical evidences for structure 5 are presented. Their preferred configurations from pmr spectra are discussed on the basis of trigonalbipyramidal structures. The relative stabilities of the series of adducts (5) are shown to be in accord with the expectations based on the strain and polarity rules. They are further shown to undergo clean reaction with water, methanol, $\mathrm{CS}_{2}, \mathrm{CO}_{2}, \mathrm{CH}_{3} \mathrm{I}$, and Br_{2} to give structurally novel products often in high yields.

Our interests in the chemistry of pentacovalent phosphorus in general, ${ }^{2}$ and especially in the reactions of trivalent phosphorus compounds with the dione and lactone dimers of dimethylketene ($\mathbf{1}$ and 2), ${ }^{3}$ led us to examine the reaction of dimethylketene itself with trivalent phosphorus nucleophiles. Reactions of $\mathbf{1}$ and 2 with various PXYZ appear to proceed ${ }^{3}$ via pentacovalent species of the types 3 and 4 . It seemed quite possible that intermediates of this type might be generated independently by reactions of dimethylketene with PXYZ
(1) National Institutes of Health Predoctoral Fellow. Taken in part from the Ph.D. Thesis of W. D. Johnson, University of Utah, 1969; published in part in preliminary form: W. G. Bentrude and W. D. Johnson, J. Amer. Chem. Soc., 90, 5924 (1968).
(2) W. G. Bentrude and K. R. Darnall, Chem. Commun., 862 (1969); W. G. Bentrude, ibid., 174 (1967); W. G. Bentrude and K. R. Darnall, Tetrahedron Lett., 2511 (1967); W. G. Bentrude, J. Amer. Chem. Soc., 87. 4026 (1965).
(3) W. G. Bentrude W. D. Johnson, and W. A. Khan, ibid., 94, 923 (1972); W. G. Bentrude, W. D. Johnson, W. A. Khan, and E. R, Witt, J. Org. Chem., 37, 631 (1972); W. G. Bentrude, W. D. Johnson, and W. A. Khan, ibid., 37, 642 (1972).
at low temperatures and stabilized for study under those conditions. Instead we find that near-quantitative amounts of $2: 1$ adducts of structure 5 are formed

in reactions with general applicability to a wide variety of trivalent phosphorus derivatives, PXYZ. The phosphorane ring system containing the functionality

[^0]: (12) L. Pauling, "The Nature of the Chemical Bond," 3rd ed, Cornell University Press, Ithaca, N. Y., 1960, pp 177, 178.
 (13) R. J. Gillespie and R. S. Nyholm, Quart. Rev., Chem. Soc., 11, 339 (1957); R. J. Gillespie, Can.J. Chem., 38, 818 (1960); 39, 318 (1961); J. Chem. Soc., 4672, 4679 (1963); Inorg. Chem., 5, 1634 (1966); J. Chem. Educ., 40, 295 (1963); J. Amer. Chem. Soc., 85, 4672 (1963).
 (14) F. A. Cotton, J. Chem. Phys., 35, 228 (1961).
 (15) (a) R. E. Rundle, J. Amer. Chem. Soc., 85, 112 (1963); Rec. Chem. Progr., 23, 195 (1962); Acta Crystallogr., 14, 585 (1961); (b) R. E. Rundle, Surv. Progr. Chem., 1, 81 (1963); (c) R. J. Hach and R. E. Rundle, J. Amer. Chem. Soc., 73, 4321 (1951).
 (16) V. M. Volkov, A. A. Levin, and M. E. Dyatkina, Dokl. Akad. Nauk SSSR, 152, 359 (1963).
 (17) A. Golebiewski, Acta Phys. Polon., 23, 243 (1963).
 (18) (a) E. L. Muetterties, W. Mahler, and R. Schmutzler, Inorg. Chem., 2, 613 (1963); (b) E. L. Muetterties, W. Mahler, K. J. Packer, and R. Schmutzler, ibid., 3, 1298 (1964); (c) E. L. Muetterties and R. A. Schunn, Quart. Rev., Chem. Soc., 20, 245 (1966), and references therein;

[^1]: (38) The simple rules, derived from perturbation theory, which govern orbital interactions are given in R. Hoffmann, Accounts Chem. Res., 4, 1 (1971).
 (39) Related to this analysis are two discussions of the electronic structure of interhalogen compounds: G. C. Pimentel, J. Chem. Phys., 19, 446 (1951); E. E. Havinga and E. H. Wiebenga, Recl. Trav. Chim. Pays-Bas, 78, 724 (1959); E. H. Wiebenga, E. E. Havinga, and K. H. Boswijk, Advan. Inorg. Chem. Radiochem., 3, 133 (1961).
 (40) Still another instructive construction of the PH_{5} orbitals is obtained by approaching an H^{-}along a C_{3} axis of a tetrahedral $\mathrm{PH}_{4}{ }^{+}$. See J. P. Lowe, J. Amer. Chem. Soc., 93, 301 (1971), for an analysis of the related $\mathrm{CH}_{5}-$ problem.

[^2]: (46) (a) See for instance: R. Hoffmann and M. P. Gouterman, J. Chem. Phys., 36, 2189 (1962); (b) in principle a 2 S orbital with a singly noded radial surface could be of a similar energy to the D orbital. In the molecular problem at hand it lies at higher energy,
 (47) R. B. Woodward and R. Hoffmann, Angew. Chem., 81, 797 (1969), and references therein.
 (48) See also M. A. Ratner and J. R. Sabin, J. Amer. Chem. Soc., 93, 3543 (1971).
 (49) (a) B. Blaser and K. H. Worms, Angew. Chem., 73, 76 (1961); (b) R. R. Holmes and R. N. Storey, Inorg. Chem., 5, 2146 (1966); (c) P. M. Treichel, R. A. Goodrich, and S. B. Pierce, J. Amer. Chem. Soc.,

[^3]: (51) R. S. Berry, J. Chem. Phys., 32, 933 (1960); Rev. Mod. Phys., 32, 447 (1960). In these publications credit is given to F. T. Smith for the original suggestion of a pseudorotation operation. We might also note here the suggestion of pseudorotation in nuclear theory by E. Teller and J. A. Wheeler, Phys. Rev., 53, 778 (1938).
 (52) L. C. Hoskins and R. C. Lord, J. Chem. Phys., 46, 2402 (1967).
 (53) (a) R. R. Holmes and R. M. Deiters, J. Amer. Chem. Soc., 90 , 5021 (1968); Inorg. Chem., 7, 2229 (1968); (b) R. R. Holmes, R. M. Deiters, and J. A. Golen, Inorg. Chem., 8, 2612 (1969).
 (54) This statement must be viewed with the proper degree of skepticism. In ref 27 a method not very different from ours gave for $P F_{5}$ a $C_{4 v}-D_{3} h$ energy difference two orders of magnitude larger than what we obtained in Table I.
 (55) (a) P. Meakin, E. L. Muetterties, F. N. Tebbe, and J. P. Jesson, J. Amer. Chem. Soc., 93, 4701 (1971); (b) P. Meakin, J. P. Jesson, F. N. Tebbe, and E. L. Muetterties, ibid., 93, 1797 (1971).

[^4]: (56) G. M. Whitesides and H. L. Mitchell, ibid, 91, 5384 (1969).
 (57) S. Brownstein, Can. J. Chem., 45, 711 (1967).
 (58) W. Mahler and E. L. Muetterties, Inorg. Chem., 4, 1520 (1965).
 (59) A similar correlation diagram for $\mathrm{CH}_{5}{ }^{+}$was constructed in ref 44 。

[^5]: (61) The $\mathrm{PH}_{x} \mathrm{~F}_{5-x}$ geometries are those calculated to be most stablei.e., with fluorines entering axial positions first.
 (62) This work failed to predict the correct structure of $\mathrm{PF}_{4} \mathrm{Cl}$. In our case the correct trigonal-bipyramid geometry for $\mathrm{PF}_{4} \mathrm{H}$ is favored only if 3 d orbitals are included.

[^6]: (63) S. B. Pierce and C. D. Cornwell, J. Chem. Phys., 48, 2118 (1968).
 (64) E. A. Cohen and C. D. Cornwell, Inorg. Chem., 7, 398 (1968). There is a controversy concerning the structure of this molecule. See also, J. E. Griffiths, J. Chem. Phys., 49, 1307 (1968).
 (65) C. H. Chang, R. F. Porter, and S. H. Bauer, to be published.
 (66) (a) L. G. Hoard and R. A. Jacobson, J. Chem. Soc. A, 1203 (1966); (b) H. Hess and D. Forst, Z. Anorg. Allgem. Chem., 342, 240 (1966).
 (67) (a) J. W. Cox and E. R. Corey, Chem. Commun., 123 (1967);

[^7]: (71) Similar conclusions were reached in ref 25 a .
 (72) R. Hoffmann, Tetrahedron Lett., 2907 (1970); R. Hoffmann and W.-D. Stohrer, J. Amer. Chem. Soc., 93, 6941 (1971).
 (73) S. C. Peake and R. Schmutzler, Chem. Commun., 1662 (1968); J. Chem. Soc. A, 1049 (1970).
 (74) M. A. Landau, V. V. Sheluchenko, G. I. Drozd, S. S. Dubov, and S. Z. Ivin, Zh. Strukt. Khim., 8, 1097 (1967); V. V. Sheluchenko, M. A. Sokalskii, M. A. Landau, G. I. Drozd, and S. S. Dubov, ibid., 10, 142 (1969); M. A. Sokalskii, G. I. Drozd, M. A. Landau, and S. S. Dubov, ibid., 10, 1113 (1969).
 (75) J. J. Harris and B. Rudner, J. Org. Chem., 33, 1392 (1968).
 (76) J. S. Harman and D. W. A. Sharp, Inorg. Chem., 10, 1538 (1971).
 (77) E. L. Muetterties, P. Meakin, and R. Hoffmann, J. Amer. Chem. Soc., in press.

[^8]: (90) J. Downs and R. E. Johnson, J. Chem. Phys., 22, 143 (1954); J. Amer. Chem. Soc., 77, 2098 (1955). See however L. Kolditz and D. Hass, Z. Anorg. Allgem. Chem., 294, 191 (1958).

